How I built a digital picture frame with a Raspberry Pi


How I built a digital picture frame with a Raspberry Pi 1

In this article, I will show you step-by-step how to build a high-quality digital picture frame. As a part-time photographer and self-tutored electronics tinkerer, I have spent countless hours researching this subject since 2005.

Building a high-quality digital picture frame (or digital photo frame as they are also called) requires the right soft- and hardware ingredients. It is so much more than slapping a small computer on an old computer monitor.

Images have become so important in our lives and more and more are taken every day. Read on to find out how you can make your pictures shine at home or in corporate environments.

You don’t buy a Picasso and put it in an IKEA frame

Well, I am not suggesting that you or I own a Picasso. But we all have images that we hold dear and that, for us, are priceless.

If you love great images and you don’t want to let them rot in the proverbial shoebox (or to put it in a bit more up to date wording: harddisk folder), you should get a digital picture frame to enjoy them every day.

You can buy digital photo frames off-the-shelf, but if you are a creative person who likes to build things, then you will doubtlessly be interested in this project.

There is no reason to be afraid of any hard- or software issues. In a series of articles on this website, I will walk you through every step in minute detail, so that you too, can create a great digital picture frame and display your favorite images in your living room.

This article describes the hardware part. To learn how to install the software please read my post “How to configure the software for your digital picture frame in 60 minutes“.

How it all began

In 2005 I bought my first digital photo frame from PhotoVu, a US-based company that produced tailor-made digital photo frames with a high-quality matting and frame.

The largest size at that time was only a 19 inches screen, but with the matting, it looked quite big. You inserted a USB stick and it beautifully displayed the photos with a high number of random transitions between them. It turned itself on in the morning and off in the evening. It didn’t come cheap at around $ 1,500 (€ 1,350), but it was very well built and worth it.

How I built a digital picture frame with a Raspberry Pi 2
My first PhotoVu

Four years later, my PhotoVu frame died, but since we had gotten so used to digital animation in the living room, we ordered a second one, this time their largest model was 22 inches. It lasted until mid-2014 and then it, too, broke.

How I built a digital picture frame with a Raspberry Pi 3
My second PhotoVu

By then, PhotoVu had gone out of business, so the choice of ordering a third one was gone.

I started extensive internet research on available off-the-shelf alternatives but came up empty-handed because of my list of criteria that asked for high display resolution, a high-quality screen with wide viewing angles and great image transitions – really important once you get used to it.

Having had stopped computer homebrewing many years ago, I looked at various alternatives like the use of an Apple TV box, but the lack of customization options made it a no-go.

In an online photography forum, someone suggested using the Raspberry Pi, a mini-computer which had only been released a few years earlier. It didn’t quite meet all my criteria, but it looked like a feasible homebrewed digital picture frame with the option of a future upgrade.

So I went on a long journey to put together the right soft- and hardware mix.

Many people have made this project possible through ideas, instructions and forum advice and in the spirit of reducing the pain for people with similar ambitions, I have outlined on this blog the critical steps for the setup.

Let’s get to work

This article describes the hardware side of how to build a digital picture frame.

Basically, all you need is a suitable monitor, a Raspberry Pi with accessories and a frame.

The monitor

I spent considerable time looking for the right screen that is suitable for DSLR photo aspect ratio (3:2). The problem is that you probably won’t find a monitor that has 3:2 format.

Most are 16:9 today, but I was lucky to find the ASUS VS24AH in 16:10 format. Only one unit away from 15:10 (which would have been perfect) but still good enough.

I also compared energy consumption levels, but luckily with LED technology, most screens aren’t as energy-hungry as they used to be. The ASUS needs 20 W which means that if the frame runs 16h a day, it boils down to about three $/€ a month in energy costs (obviously dependingly on the electricity prices of the country you live in).

The old PhotoVu frame had a smaller screen, used three times as much and became quite hot in the process.

Also important are the viewing angles of the screen because in a typical living room setting you will often see the frame from an angle.

There is a lot more to say about finding the right screen for your digital picture frame, and I detailed my thoughts in the article “Selecting the right display for your Raspberry Pi digital picture frame“. I recommend reading this before you make your choice.

The computer

The Raspberry Pi, created in 2012 to get UK students interested in programming and engineering, has been a runaway success and has already sold over 19m units by early 2018.

It is tiny, low power (3W), fully integrated and only costs $35 (€35).

$35 was the communicated price point of the Raspberry Pi foundation all along, and even for the most recent models, $35 was still standing. Including the power supply, SD card, and a small case, you are looking at around $50 (€50), but this is still very affordable for a mini computer.

In terms of performance, it may not compare too well with the average laptop computer, but it has more than enough power to run a digital picture frame 24h very reliably. By the way, the tiny Raspberry Pi has much more power than the onboard computer on the Apollo 11 had for the first moon landing.

How I built a digital picture frame with a Raspberry Pi 4
Enough power to land on the moon

It runs on Raspbian, a Linux dialect for the Raspberry Pi, very similar to Debian. This should not deter users who have never used Linux before, as you do not need to know much about it as everything is described in this post. As a matter of fact, my own entire Linux “mastery” comes from good instructions and tutorials found on the internet.

One of the most significant advantages of the Raspberry Pi is that it comes with an ardent community of homebrewers and selfless computer hobbyists that provide advice and ideas in many internet forums or blog posts.

To understand everything about the hardware components that you need and how to install the software, please have a look at my article “How to set up your Raspberry Pi for your digital picture frame“.

It is very detailed and has up to date step-by-step instructions.

The frame

Unlike the PhotoVu frames that I had used before, I decided against matting this time and opted for a more modern look with a simple black anodized metal frame only.

I would probably not recommend a metal frame anymore (although they look marvelous) because it seems to reduce the signal quality of the wifi module slightly, but this depends on how much space you have between the frame and the wall. It works fine in my current setting with the Raspberry Pi 3+; the older Raspberry Pi 2 B showed occasional wifi outages.

My next frame will be a wooden frame, and that is what I would recommend to you.

Given the metal border around the naked display of about 0.8 inches (2 cm), it wasn’t easy to find the right frame model right away. So, if you have a framing shop nearby (unfortunately quite rare these days), I would encourage you to take your LCD panel and try various frames. Or you go to a DIY store and try out the available frame panels.

The frame itself had a depth of 1.2 inches (3 cm). Not enough to house the screen, cables, and the Raspberry Pi but a small distance from the wall is absolutely acceptable. The entire depth would be 2 inches (5 cm) which still looks nice.

Make sure that your frame construction is solidly built as it needs to house the screen and the Raspberry Pi reliably. You don’t want your frame coming off the wall.

Removing the monitor bezel

Before you strip down the monitor, I would recommend that you get your Raspberry Pi working, connect it to the monitor and test your digital picture frame application. Once that works, you can move on to a more tricky bit. But don’t fear, the chances are high that you will succeed.

ONE NOTE AND DISCLAIMER UPFRONT: DISMANTLING A COMPUTER MONITOR MIGHT EXPOSE YOU TO DANGEROUS ELECTRICAL VOLTAGE. THE AUTHOR OF THIS ARTICLE DOES NOT GUARANTEE THE ACCURACY OR COMPLETENESS OF ANY INFORMATION PUBLISHED HEREIN AND SHALL NOT BE RESPONSIBLE FOR ANY ERRORS, OMISSIONS, OR DAMAGES ARISING OUT OF USE OF THIS INFORMATION.

Monitors do have few or no screws but rather parts that snap together and that are not always obvious to spot.

Fortunately, there a quite a few YouTube videos showing how to peel the plastic off a brand new screen without ruining it and exposing just the bare electronics. This varies with every monitor, but my recommendation is to watch some YouTube videos before you try it with your own monitor. You may even find a video for your exact type of monitor.

Once you have carefully removed the monitor bezel, this is what you get:

How I built a digital picture frame with a Raspberry Pi 5
The monitor has no clothes

Just for the fun of it, here is the empty shell of the monitor:

How I built a digital picture frame with a Raspberry Pi 6
The remains of the day

My ASUS monitor had a metal piece that was protruding and which needed to be sawed off with a Dremel.

Before you do that, you should carefully seal all holes of the back of the display with an adhesive plastic foil, or else tiny metal pieces may enter the inner electronics of the screen which could cause a short circuit or even worse damage.

Be careful with that part and clean everything neatly before proceeding!

How I built a digital picture frame with a Raspberry Pi 7
What sticks out is cut off

Now put your metal frame together and carefully slide in the LCD screen. Be especially careful with any corners to not damage any cables.

Tighten everything up, and your frame should now look like this:

How I built a digital picture frame with a Raspberry Pi 8
A work of art

Now, you can start with the wiring. The important thing is that you get a bent HMDI cable (there are two types, get the one which goes up) and you also need a bent power supply cable for the monitor.

The power supply cable defines the distance between the frame and the wall, so the flatter a model you can find, the better.

Use temperature resistant glue (most general purpose quality glues will do) to attach the Raspberry Pi case and its 5V power supply (get one of the very flat ones).

It’s probably not a bad idea to let the glue harden out for 24 hours before proceeding. Then carefully attach the cables and fix them with plastic connectors wherever possible and a bit of glue if necessary.

How I built a digital picture frame with a Raspberry Pi 9
Nobody will look behind your frame

It is important not to mount the Raspberry Pi case too high as you need to save some space for the wall mount later.

I also used a fair portion of gaffer tape to tighten up any loose ends. The little switches that come with the monitor should remain accessible if you want to adjust the picture quality of the monitor later. In fact, I haven’t used them once yet.

BE CAREFUL WITH ELECTRIC WIRING, AND DON’T DO IT IF YOU DON’T KNOW WHAT YOU DOING!!!

Connect the picture frame to electricity and hope that everything still works.

How to wire the electricity cable

An important issue that really makes a difference in appearance is visible power cables.

If you want a nice digital picture frame in your living room or an office for that matter, power cables running away from the frame are just plain ugly.

So go the extra mile and either put the frame in a spot on the wall where there is already a power connection e.g. a lamp or a power outlet or extend a cable from a mains outlet by carefully slitting up the wall.

How I built a digital picture frame with a Raspberry Pi 10
A clean cut for a great look & feel

I understand that this is not possible everywhere, but a little creativity can go a long way and will make the photo frame a lot more professional looking. I have been asked many times if my digital picture frame was battery powered because people were almost expecting a cable.

Mounting it on the wall

For the wall mount, I used three stacked 19 inches (47 cm) wide boards with a thickness of 1 inch (2.5 cm).

The actual thickness that is right for you depends on the depth of the components that extend beyond the depth of the frame, in my case, that was dependent on the monitor power cable which was the “thickest” component.

I mounted two hinges on the board to hold the picture frame and put some black paint on the endings of the board to make them virtually invisible when looking at the frame from the side (which probably doesn’t happen too often, but anyway).

How I built a digital picture frame with a Raspberry Pi 11
Hang it up

Turn it on

How I built a digital picture frame with a Raspberry Pi 12
Jumping of joy

Note: If the colors on your monitor look strangely exaggerated, make sure that you have set the ASUS monitor to sRGB mode in the presets. This is typically best for photo viewing. For other monitors, there may be a similar setting.

Congratulations!

Wolfgang Männel

Photography has always been a passion of mine. Since 2005, I have looked at countless ideas on how to enjoy beautiful images digitally, making the experience entertaining, amusing, and stimulating. In my other life, I am an entrepreneur, consultant, and bicyclist based near Frankfurt am Main, Germany.

Recent Content